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SUMMARY 
In this paper we present a finite element method for the numerical solution of axisymmetric flows. The 
governing equations of the flow are the axisymmetric Euler equations. We use a streamfunction angular 
velocity and vorticity formulation of these equations, and we consider the non-stationary and the stationary 
problems. 

For industrial applications we have developed a general model which computes the flow past an annular 
aerofoil and a duct propeller. It is able to take into account jumps of angular velocity and vorticiy in order to 
model the flow in the presence of a propeller. Moreover, we compute the complete flow around the after-body 
of a ship and the interaction between a ducted propeller and the stern. In the stationary case we have 
developed a simple and efficient version of the characteristics/finite element method. Numerical tests have 
shown that this last method leads to a very fast solver for the Euler equations. The numerical results are in 
good agreement with experimental data. 

KEY WORDS Inviscid incompressible flows Axisymmetric Finite element Characteristics Ducted propeller 

1. INTRODUCTION 

The streamfunction and vorticity formulation of the Euler equations governing an incompressible 
and non-viscous flow has been successfully used in two-dimensional problems. In a finite element 
context it has been associated with either classical leap-frog or Crank-Nicolson time-differencing 
schemes’.’ or with the method of characterist i~s.~-~ 

It is well known that in the axisymmetric case there is also a streamfunction formulation of the 
Euler equations. It uses the 8-components, in cylindrical co-ordinates, of the vector potential, the 
velocity and the vorticity. The choice of this formulation has, in our case, many advantages. 
Among them we can mention the following. 

1. The axisymmetric flow is completely described by three scalar functions. 
2. The incompressibility condition is exactly satisfied. 
3. From a computational point of view, this formulation gives a simple model leading to fast 

solvers well adapted to our purpose: ‘trial and error’ procedures in engineering design. 

Our model involve three equations: one elliptic equation for the streamfunction and two 
transport equations for the angular velocity and the vorticity. A finite element method using non- 
uniform meshes has been chosen in order to get a general spatial discretization giving a soft 
treatment of the geometry. Then the main difficulty of the numerical solution of the Euler 
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equations is to write a good solver for the transport equations. Since for applications in ‘pump-jet’ 
design we have to model the convection of jumps of angular velocity and vorticity, we need a 
robust method, especially well suited to difficult problems with rough conditions. This has been 
the key point of this work. 

One can find in Reference 7 a general review of numerical methods in turbomachinery flows, 
and in References 8 and 9 some finite element applications. The present work differs from the 
preceding by the choice of triangular meshes, direct solutions by Choleski factorizations of the 
elliptic equation and an exact and direct treatment of the Kutta-Joukovski condition, obtained 
elsewhere through an iterative process. Our final choice of a stationary implementation of the 
characteristics method to solve the convection problem is the original part of this work. 

This paper is organized as follows. In Sections 2 and 3 we derive the mathematical formulations 
and the boundaries conditions of the problem, and specify the treatment of the Kutta-Joukovski 
condition. In Section 4 we present the finite element spatial discretization and give a convergence 
result in a simpler model case without ‘swirl’. Section 5 deals with time discretizations using leap- 
frog and semi-implicit Crank-Nicolson schemes. We derive theoretical stability results in both 
cases and present some numerical tests showing the inability of this classical approach to model 
the flow correctly. Sections 6 and 7 are devoted to our implementation of the characteristics 
method giving the stationary solution of the flow by an iterative fixed-point algorithm. Finally, in 
Section 8 we present numerical results in the case of the complete model of a duct propeller. They 
reveal good agreement with experiments carried out by R. Goirand at the Bassin des Carenes in 
Paris. 

2. THE MATHEMATICAL MODEL 

The general three-dimensional Euler equations in cylindrical co-ordinates r, 0, z are 

a K  aV, VeaK V i  a K  l a p  -+ vr-+ + r,-= --- 
at ar  r dl3 r .. a Z  p ar ’ 

with 

av, av, v,a v, av, 1 a p  -++--+--++,-=--- 
dr r a0  az  at 

l a  iav, a v ,  
r ar  r ae az  div( Y )  = --(I V , )  + -_ + -= 0, 

where Vr, VB, V, are the components of the velocity, j) is the density of the fluid and p is the 
pressure. They reduce in the axisymmetric case to the following system. 
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with 

i a  a v ,  
r dr aZ - - ( r  V , )  + -= 0. 

Remark 1 

We do not restrict ourselves to the case Ve = 0. We just take the derivatives 

a 
a6 
- = 0. 

We introduce a streamfunction $0 such that the meridian velocity 

VM = ( V Z 9  v,) 
can be written 

l a ( r @ e )  v = _ _ _ _  
r d z  ' 

1 a(r$e) V =-- 
' r d r '  (3) 

Thus the zero-divergence condition (2d) is automatically satisfied. Now we consider the 
6-component of the vorticity vector 

Equations (2a, b, c) lead through straightforward calculations to the following system 
in $e, J'o, we: 

(54 
a(ue / r )  d(we/r)  a ( u e / r )  1 a( + vz- = -- 

r2 a Z  . + vr- at ar a 2  

With the identities (3), the above system defines the flow completely. It is the basic model of this 
work. 

Remark 2 

Equation (5a) is a simple elliptic equation in Equations (5b) and (5c) appear as transport 
equations of r Ve and ue/r respectively along the streamlines, with the presence of a left-hand term 
in (5c). 

3. THE BOUNDARY CONDITIONS 

Let C'l denote in the sequel a bounded open set of R2 with boundary r such that for every point of 
co-ordinates (2, r) in R we have 

0 < ro < r < r I  . (6) 
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The classical inviscid boundary condition 

leads to the following condition on $0 .  

u - n  = 0 

curl(r$,)*n = 0. 

Thus we get 

where the ci are constant, for each component T i  of the boundary r. 
r$e Ir, = Ci 9 

(7) 

3.1. Model 1 

As a theoretical model, we consider the case of a simply connected domain 51 with the boundary 
condition 

r$e Ir = 0. (10) 

3.2. Model 2 

Now we turn to a more realistic case. Q will denote the meridian section of an annular duct 
(Figure 1). To and rl are assumed to be slipping walls. On the upstream boundary rin the velocity 
field is given. On the downstream boundary TOu1 we assume only that the radial component of the 
velocity is zero. 

This model represents the flow around an axisymmetric body. The boundary rl is assumed far 
enough from To to be a horizontal stream surface, which leads to the following boundary 
conditions for $6, V0 and 0 0 .  

On rin, To and rl we deduce the values of J / @ ,  Ye and me from the given velocity field. With r$e 
defined up to a constant, we are able to choose rt,he = 0 on To. Then the law of rt,,hB on Tin is 
completely known and we get the constant value c of rt,he on rl.  

On roul the condition V ,  = 0 leads to the homogenous Neumann boundary condition 

TIro", = 0 

rl 

'in r0,t 

Figure 1. The axisymmetric duct 



AXISYMMETRIC EULER EQUATIONS 145 

3.3. Model 3 

Let us now consider the same annular duct but with an axisymmetric aerofoil-shaped body 
inside (Figure 2). On the aerofoil boundary r2 we have the inviscid boundary condition 

u.n= 0, (12) 

r*o 1r2 = c2. (13) 

which leads to 

The problem is then to determine the physically correct value of the constant c2.  This has been 
done by using a Kutta-Joukovski condition. This condition implies the equality of the static 
pressures at the upper and lower sides of the trailing edge. 

We made the computation in the following manner (F. Hecht, private communication). We 
looked for a streamfunction r$o given by 

r$f) = $0 + a$17 (14) 
with Ic/o the solution of equations (5a) at each time step, with the real boundary condition, except 
on T2 where we take 

and t+hl the solution of the simple homogeneous equation 

with all the Dirichlet boundary conditions equal to zero except on r2 where we take 

The parameter CI is then computed at each time step in order to satisfy the equality of the static 
pressures at the upper and lower sides of the trailing edge. 

i.e. 
P: = P; ; (18) 

(19) 
2 
P 

Icur1($,,+cqbl)~~ -Icurl(ll/o+crll/,)lZ- =- (P’  -P-), 

where P +  and P- are the pressures on the upper and lower sides of the trailing edge (Figure3). 

rl 

‘in 

rO”1 

Figure 2. The complete model geometry 
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Figure 3. The numerical treatment of the Kutta-Joukovski condition 

This quadratic equation in M has two solutions. The right one is the root for which the normal 
velocities are opposite. 

4. FINITE ELEMENT APPROXIMATION 

In order to derive a finite element approximation of the problem, we need to introduce a 
variational form of the axisymmetric Euler equations. 

4.1. Basic concepts and function spaces 

Let ( . , . ) denote the axisymmetric scalar product in L2(Q),  

(u, u )  = I/Q uvrdrdz, (20) 

and 11 - 
Sobolev space 

the associated norm in Lz(Q). For m~ N and P E R  with 1 < p < + 00 we define the 

W m ’ ” ( a )  = ( U E L P ( ~ ) ; a u U E L P ( ~ ) ,  VIM1 < m}, 
which is a Banach space for the norm 

or 

I I U I I ~ , ~ , ~ =  sup supess(d“u(x)(), p = +a. 
l u l < m  ( x ~ Q  

we also provide Wm*”(rZ) with the following semi-norm: 

I U ~ , , ~ , ~ =  sup (supess(aau(x)() for p =  +a. (24) 
la1 g m  x e n  

In the special case p = 2 we obtain the Hilbert space H”(rZ) with the norm 11 * and the semi- 
norm I’lm,n. 
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Let us introduce the bilinear form on (H'(R))', 

a: (u, v)-+a(u, v), 

a(u, v)=// -(--+--)drdz,  1 auav auav 
arar  aZaZ 

and the trilinear form on W l*m(R) x H' (0) x L2(Q), 

b: (u, v,  w)+b(u, D, w), 

w drdz. 
au av au a0 

aZ dr ar aZ b(u, v, w) = 1s (- - - - - 

4.2. Properties of the linear forms a and b 

4.2.1. The linear form a. Since for every point (z, r )  in R we assumed that 

0 < ro I r I r l ,  

the bilinear form a is, as in the two-dimensional case, continuous in (H' (Q))' and H h(Q) -Elliptic. 
Moreover, we have the following inequalities: 

4.2.2. The form b. The trilinear form b satisfies the following properties. 

(1) b is continuous in W'* O0 (Q) x H i @ )  x L'(R). 
(2) V U E  W ~ ~ m ( t 2 ) , v ~ H 1 ( Q )  we have 

b(u, v,  u)=b(u, u, u)=O. 

Proof: (I) 

so that 

and 

(2) The form b is exactly the same as the form of the convective term in the two-dimensional 
Euler equations and we refer to reference 1 for the proof. 
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4.3. Variational formulation 

Using a classical Green formula, we obtain, in the case of model 1, the following variational 
formulation of equations (5a, b, c). Find a function t E [0, T]-+($e(t), oe(t), we(t))€ HA(SZ) x H'(SZ) 
x HI@) such that 

(314 

(31W ($rue(t), u )  =b(r$e(t),roeit), 0) V V E H '  (0) 

4.4. Conseroation properties of problem E 

Using the fundamental property (29) of the trilinear form b we derive the following results: 

(32) 
I d  
--I Irue(t) I I:, n=b(r+e(t)t rue(t), rue(t))=O 2 dt 

V t  E L O 7  TI. (1) 

so that 

and finally 

Remark 

In the particular case of an initial value of 0, equal to zero, remains null for all t E [0, 7'1 and 
the system E reduces to two coupled equations involving ,r+e and Ue/r. Moreover, in that case we 

4.5. Generalization 

4.5.1. In the case of model 2 the test function space in the first elliptic equation (31a) is replaced 
by the space V defined by 

V = ( U E H ~ ( S Z ) ; U = O  on ri,d-Ourl} 
The unknown streamfunction I$@ satisfies the following boundary conditions: r+@ given on Tin; 
r+,=O on To and r+e=c (given constant) on rl; a(r+e)r/an=O on Tout. 
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4.5.2. In the case of model 3 we also have to take into account a Kutta-Joukovski condition 
(see Section 3.3). We made the computations as follows. 

The stream function has been computed once and for all at the beginning of the program. It 
does not depend on time. Then we just have to solve one elliptic equation at each time step to get 
the complete streamfunction (Figure 4). 

4.6. Finite element spatial approximation 

Let uh and vh be two finite dimensional spaces such that UhC Wh."(SZ) and VhC Wl*"(Q). We 
approximate the continuous problem (E)  by the following approximate problem (Eh). Find a 
function t E[O, T ]  + ( $ @ , h ( t ) ,  u@,h(t), o,,h(t))EUh x v,, x v,, satisfying for all tE[07 TJ 

4.6.1. Conservation properties of problem E,. We get for the approximate solution ?$esh, rue, h 

and 0 0 ,  h/r the same bounds as for the exact solution. For instance, 

II~uUBhht)~~lo,n=IIrue,h(0)llO,R V t E C o ,  

4.6.2. A$mt conuergence resuIt. Let us consider the simplest model problem E* in the particular 
case of V, = 0 (flow without 'swirl'). The corresponding approximate problem Et  reduces to the 
following system of two equations in $, and w,: 

Assume that the ($,, 0,) solution of the problem E* belongs to the space 

L"(0, T ; [ W k ' y n ) u W ; *  "(a)] x Wk+lPrn (a)) 

Figure 4. The computational mesh in the case of the complete model 
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Then under classical hypotheses of finite element interpolation we get the following error bound: 

t $e( t ) -  $e, h ( t ) t  1, a + I Iwe(t)-we,h(t)I to, a 5 Chk (40) 

Proofi The proof follows the same lines as the proof of the convergence of the finite element 
method in the two-dimensional case.' In fact the form b here is exactly the same as in the two- 
dimensional case and there are just slight differences in the expressions of the bilinear form a and 
the scalar product. These differences are very easy to handle since we can assume that hypotheses 
(6) hold. 

Remark: the general case 

The general case is more tricky because of the term 

in equation (38c). We have not yet succeeded in proving the convergence of the finite element 
scheme in this case. 

5. TIME DISCRETIZATION 

Let us choose a positive integer N ,  let At denote the corresponding time step, 

At= T I N ,  

and (t,) the subdivision of [O, TI ,  

t,=nAt for O l n l N .  

Let $;f, h ,  u e f h  and w:,h denote approximations of #e(t,), ue(t,) and We(t,) respectively. 

5.1. The leap-frog scheme 

The leap-frog scheme for the problem E can be written as 

The stability of leap-frog scheme follows from the next lemma. 



AXISYMMETRIC EULER EQUATIONS 151 

5.1.1. Lemma. Under the stability hypotheses 

(1) 

(2) there exists a constant A > 0 such that 

C C 

) (42) 
1 

cAt ~ ~ r $ ~ , h ~ l . m , R + ~ ~ r ~ ~ , h ~ l , m , R  < 1  V n E O ? N ,  r 
XIr$:, h-r$:,il 1 l . r n , R + ~ ( I r u : ,  h 1 l , m J 2 + ~ r u ~ ; t , '  1 l , m , R ) < A ,  (43) 

we have the following bound for every n=O, ... , N :  

Prooj Let us introduce 

We follow, as in Reference 1, the energy method used by Richtmyer and Morton. 
We have 

!b(r$:, h , h ,  r';f,+l )I 5 clr$:, /I! 1,  m, Rl r':, hl 1,Rl  Iru:,+: 110, Q, 

and 

so that 
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Using then 

and 

and by use of the stability hypotheses we derive 

and the result. 
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5.2. A semi-implicit scheme of order two 

element context: 
This scheme is a semi-implicit Crank-Nicolson scheme. It can be written as follows in a finite 

This scheme is of order two in time and satisfies the following stability property. Let us assume 
that there exists a constant A such that we get the inequality 

The preceding scheme is stable and we easily get 

5.3. Methods of characteristics 

finite element context we refer to Reference 6. 
For the application of the method of characteristics to the transport equations (5b) and (5c) in a 

5.4 Numerical tests 

The numerical tests have shown that the explicit leap-frog (Figure 5) scheme requires very small 
time steps in order to satisfy the stability condition. The semi-implicit scheme is better (Figure 6).  
Although it is more costlyfor each time step, it can work with much larger At and is globally faster. 

However, the best results for the time-dependent transport equation were obtained by the use of 
the characteristics method. See Reference 6 for a comparison of these schemes. 

6. AN ITERATIVE METHOD FOR THE STATIONARY SOLUTION 

In order to get the stationary solution of the Euler equations (5a, b, c) we can of course use the time 
discretization schemes quoted above. However, it is a better choice with respect to numerical 
stability and computational time to use the following simple version of the characteristics method. 
This implementation essentially uses our ready knowledge of the streamlines, which is the case for 
plane or axisymmetric flow problems. 
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Figure 5. The vorticity (ID&) field at t = 1 computed by the leap-frog scheme with At =0.001 

Figure 6. The vorticity (wo/r) field at t = 1 computed by the semi-implicit scheme with At =0.01 

Let us consider the simplest model without swirl (i.e. with V,=O) to explain the method. In this 
case the problem reduces to the problem E*, the vortex o e / r  being simply convected along the 
streamlines r$@ = constant. 

Thus to determine o e / r  at any point x of the domain Q we just have to find on which streamlines 
the point x lies. Then we go back along this streamline to the entry point on the upstream 
boundary where the value of the vortex is given. We can summarize the computational process by 
the following iteration method. 

Suppose that $ : , h  is given at time to. Then for any n20 define $:,+hl for $ ; , h  by 

where mi is the numerical function, defined from the given upstream boundary values of the flow, 
that gives the functional law between the values of r$o and those of o e / r .  

More generally we can consider the family of algorithms: 

$:, h given at to; 

then $;,il is computed from by 
u(r$:,+hl, u h ) = a ( r $ ; ,  h ,  U h ) - - p ( a ( r $ : , h r  u h ) - ( w i ( r $ : ,  h), uh)) v U I E  uh* (50) 

If p = 1 we recover (49). 
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Moreover, if wi is differentiable, we should be able to solve the problem by a Newton method 
such as the following: 

$,9 h given at to; 

u(r$:,+hl, u h ) - ( w i ( r $ i ,  h ) r $ i , + h l ,  u h ) = ( a i ( r $ : ,  h)?uh)4(wi'(r$: ,  h l r $ : ,  h? uh) vuhE uh. (51) 

This kind of iteration has been studied by many authors. One can find an interesting discussion 

First of all we have the following theoretical result.12 
Let us consider the following non-linear problem: find u E U such that 

in Reference 10. See also Reference 11. 

a(u, u) = (0 (u), u) v u  E u, 

where a is a bilinear, continuous and strongly elliptic form which satisfies 

a1 lull2 s a(u, u) Vu E U ,  with a > 0, 

M u ,  41 I MI lull 41 vu, UE u, 
and w is a non-linear operator in U .  Let us define A: U-rU by 

( A  (u), u) = a(u, u) - (w(u), u) vu, u E u. 
We have the following result. 

(53) 

(54) 

(55) 

Theorem 

Suppose A is Lipschitz continuous on the bounded sets of U and suppose that A is strongly 
elliptic, i.e. there exists a constant k > O  such that 

( A  (u2) - &I), u2 - u , )  2 k I I u2 - u1 I I Vu,, u2 E u. 
Then the problem (52) has a unique solution. Moreover, the iteration 

uo given; 
defined from u" by 

a(u"+',u)=a(u",u)-p(a(u",U)-(o(u"),u)) V U €  u 

0 -= P < Ph4, 

converges to the solution u of (52) for every constant p satisfying 

pM being a positive constant depending on uo in general. 

exists a positive number k such that for all ul and u2 in U we have 
Let us make some comments on the ellipticity condition (56). In our case it implies that there 

a(u2 u2 - u 1 ) - ( a i ( u 2 ) - a i ( u 1 ) 9  u2 -u1) 2 kI Iu2 -u1 I12. (59) 

(60) 

(61) 

But a is strongly elliptic, with 
2 

a(u2 - ul, u2 - u J 2  alluz - ulll . 
Then the inequality will be obtained if we can ensure that 

(Oi(U2) - W i ( U 1 ) ,  u2 - u1) 5 0 vu,, u2 E u, 
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or if we can suppose that mi satisfies a Lipschitz condition 

I I mi(uz) -Oi(ul)l I Ll lu2 -u1 I I, (62) 

with a Lipschitz constant L such that L < M .  
We remark that in this last case it is easy to prove the convergence of the iterations (49) by a 

contraction argument. 
We do not know whether condition (59) is a necessary condition for the existence or the stability 

of the flow. We refer to Reference 13 for further considerations on the stability of stationary 
solutions of the Euler equations. Let us however point out the problem given in Figure 7. 

In the case of a flow with a given velocity profile such that mi is not bounded, we do have 
instability of the flow, and this is one of the main difficulties in modelling a propeller. 

7. FIXED-POINT ITERATION ALGORITHM VERSUS TIME-DEPENDENT 
APPROACH 

Let us denote by $@, h the stationary solution of the approximate problem E,. When the fixed- 
point algorithm is convergent we get the following error bound for every iteration n = 0, . . . , N :  

I I$"ehh$O,  h ~ l l , R ~ C k n l l $ ~ ,  h-$B,hII, (63) 

(64) 

In contrast, in a time-dependent approach each iteration corresponds to a time step. We solve a 

with k I 1. The convergence rate depends on the value of k, but we shall get for sufficiently large n 

1 I$;, /I-$@, h l  11, R<:&, 

whatever E may be. Then the global error is only a finite element interpolation error. 

differential equation of the type 

The best error bound we can get, by use of the Gronwall lemma, is the following: 

1 1  $;f, h -  $0. h ( l n ) l  I 1, R 5 Cexp(Atn) ( 1  1 $:, h-$0, h ( O ) 1  I + h k ) .  (66) 
Let us then suppose that the stationary solution is obtained at the time T =  t,. We then have the 
following inequality: 

1 1  $: h -  $0, h I I 1, R 5 Cexp(AT) ( 1  I$:, h -  $0, h(O)1 1 + '1. (67) 

Figure 7. 
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The initial error and the interpolation error are multiplied by a factor exp(AT) which grows 
quickly with T. This is heuristic reason why the fixed-point iteration algorithm gives much better 
results than a time-dependent approach when one is only interested in the stationary solution 
(Figures 8 and 9). 

8. MODELLING OF A DUCT PROPELLER 

In order to model the presence of stators and rotors, we introduce jumps of the angular velocity Ve 
and, for the rotors only, a jump of the pressure. 

Let us say a few words about the computation of the pressure in our model. Pressures are 
convected along the streamlines from the upstream boundary to the downstream boundary. Then, 
when a streamline goes across a rotor, we add a jump of pressure in order to model the propeller 
effect. This increases the velocity in the duct through the Kutta-Joukovski condition. We also 
need, in that case, to introduce some viscosity effects at the trailing edge of the duct. After many 
numerical experiments and computational works, we determined two practical solutions. 

First we introduce some amount of vorticity at the trailing edge in order to maintain the jump of 
axial velocity up and down to the trailing edge of the duct. The physically correct value for that 
jump was chosen as follows: 

This solution gives good results but may lead to computational instabilities. 

Figure 8. The velocity field of the stationary solution computed by our iterative method 

Figure 9. The vorticity (a,&) field of the stationary solution computed by our iterative method 
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The second solution prevents instabilities. We first make a computation to determine the 
geometry of the streamline passing by the trailing edge point. Then we completely compute the 
flow with this imposed streamline. Both methods have been compared and give similar results 
(Figures 10- 12). 

More detailed discussions, complete tests and a comparison with real experiments made at  the 
Bassin des Carenes in Paris by B. Goirand are to appear (Figure 13). 

Figure 10. The streamlines of the stationary solution computed by our iterative method in the case of a duct 
propeller 

Figure 1 1 .  The velocity field of the stationary solution computed by our iterative method in the case of a duct 
propeller 

- -  - --O =----- 

Figure 12. The vorticity (w&) field of the stationary solution computed by our iterative method in the case ofa 
duct propeller 



159 AXISYMMETRIC EULER EQUATIONS 

c c 
a 

Figure 13. Comparison between computed and experimental velocity profiles before and after the propeller made 
by B. Goirand at the Bassin des Carenes in Pans 

9. CONCLUSIONS 

In this paper we presented a stable, precise and very fast solver, based on the characteristics 
method, for the stationary axisymmetric Euler equations. Its stability and computing time 
performance are well adapted to ‘trial and error’ procedures in engineering design. This scheme 
has been successfully used to compute an internal-external axisymmetric flow and to determine 
the whole propulsive performance, especially duct thrust and interaction between propulsor and 
stern. Comparisons with experiments made at the Bassin des Carenes in Paris have shown very 
good agreement between measurements and calculations. 

We are now developing a finite element blade-to-blade flow calculation in order to produce an 
automatic, complete quasi-3D solver. Our purpose is again to obtain a low-time-consuming, 
simple, stable, numerical code in order to use it in an engineering design context. 
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